INTRODUCTION

There has been a great deal of archaeological research conducted on the Greater Mapungubwe Landscape, an area which includes northern South Africa, northeastern Botswana and southwestern Zimbabwe (Fig. 1). Most of this research has been conducted on the South African side of the border (Fouché 1937; Hanisch 1980, 1981a; Eastwood & Cnoops 1999; Calabrese 2000a,b; Hall & Smith 2000; Huffman 2000, 2007, 2008, 2009; Wood 2000; Kuman et al. 2005; Van Doornum 2005, 2007, 2008; Eastwood & Eastwood 2006; Schoeman 2006; Kempson 2007; Forssman 2010). Immediately to the north of the Limpopo River, in Botswana and Zimbabwe, little work has been conducted even though a number of sites have been identified (see Huffman 2008). Zimbabwe has seen some studies focusing on the agricultural sequence (e.g. Robinson 1966; Garlake 1967; Manyanga et al. 2000; Manyanga 2006) and excavations have been performed at a small number of LSA sites (e.g. Robinson 1964; Cooke & Simons 1969; Walker & Thorp 1997; Thorp 2010). The least studied part of this landscape is in Botswana where only a few excavations at agriculturalist homesteads (Van Waarden 1979, 1980; Voigt & Plug 1981; Kinahan et al. 1998; Kinahan 2000; Mosothwane 2011) and a single LSA excavation (Walker 1994) have been reported. The Greater Mapungubwe Landscape witnessed significant cultural changes between AD 900 and 1300 leading to the apparent disappearance of the indigenous foraging culture (Van Doornum 2005: 196) and the formation of complex agro-pastoral state societies (Huffman 2000). In this paper recent findings from a large project in the Northern Tuli Game Reserve, Botswana (Fig. 2) are presented in order to demonstrate the rich archaeology of the region and contribute to our understanding of the local prehistory.

BACKGROUND

LOCAL ENVIRONMENT

Northern Tuli is a 72 000 ha game reserve most of which is located between the Motloutse and Shashe Rivers in northeastern Botswana. Its southern and northeastern boundaries are the international borders with South Africa and Zimbabwe, respectively. The area is composed primarily of undulating basalt ridges except along the Limpopo and Motloutse Rivers where shear deformation along the Limpopo Mobile Belt (McCarthy & Rubridge 2005: 37) has exposed the underlying Clarens Sandstone Complex and formed kopjes and sandstone ridges (Le Baron et al. 2010). Dense stands of Mopane tree (*Colophospermum mopane*) dominate the local vegetation with vachellia (previously known as acacia) shrubland in floodplains and on disturbed land (Alexander 1984). The northern basalt zone is only broken by the Pitsani, Njaswe and Mojale Rivers along which fertile floodplains can be found in certain areas. Along the river networks are riverine forests comprising mostly *Croton* spp., apple-leaf (*Lonchocarpus capassa*), nyala tree (*Xanthecercis zambesiaca*) and vachellia. The area is characteristically hot and dry with an average maximum temperature of around 32°C in summer and 22°C during winter (Hanisch 1981b) and an average rainfall of between 320 and 350 mm per annum (Huffman 2008).

PREVIOUS ARCHAEOLOGICAL RESEARCH

There have been a number of surveys conducted in Northern Tuli, but most of these findings remain unpublished. The bulk of the surveying was performed by Grant Hall during his employment at the Mashatu Game Reserve. From his work he produced an unpublished report (G. Hall 2003) in which he discusses the Mmamagwa complex, 46 agriculturalist homesteads that he was able to identify which include Zhizo, K2, Mapungubwe, Khani and Venda period sites (Table 1), and a glass bead assemblage collected from the Mmamagwa complex...
and analysed by Marilee Wood (2005). There have been two additional surveys conducted by Ed Eastwood along the Motloutse River and by Cynthia Mooketsi (2009) in the western portion of Mmamagwa near to the Mmamagwa complex.

In addition to the surveys there have been a few excavations. The earliest of these was Van Waarden’s (1979, 1980) excavations at Leeukop as part of a project sponsored by Trent University. The site is about 1.6 km northwest of Mmamagwa and was occupied by agriculturalists during the 19th century with a possible early 17th century component and may have been used as a rain-control site. Over 40 pole and daga structures were found along with several middens and a large assemblage of ceramics, beads and a number of human burials. Commando Kop, which is situated approximately 22 km northeast of Leeukop and along the Pitsani River, was excavated as part of the same project (Voigt & Plug 1981). The site has a primary Zhizo occupation with 11 associated human burials but also has Leopard Kopje ceramics. During the Second Anglo-Boer War the site was used as a cannon station (Huffman 2012) because of its elevated position on Pitsani Hill overlooking Bryce’s store 2 km south along the river where an intense battle occurred in 1899 (Hickman 1972). Fortunately, the temporary war-time use of Pitsani Hill did not damage the site significantly (Voigt & Plug 1981).

More recently Nick Walker (1994) excavated Tuli Lodge and Morongwa Mosothwane (2011) Cut Line Rock, both near the Limpopo River. Mosothwane’s (2011) excavation in 2008 was limited to a naturally mummified human body later found to be a male between the ages of 40 and 60 years. The remains were removed from a homestead that contains Khami ceramics and was likely occupied between AD 1400 and 1800. At Tuli Lodge Nick Walker (1994) excavated two 1 × 1 m squares to a depth of 30 cm and recovered 14 379 lithics which include 4912 chips (34.16%) and 441 formal tools (4.66%). He noted a decline of backers pieces relative to scrapers in upper levels. The assemblage also included Bambata sherds and what Walker (1994) calls Mapungubwe/Zimbabwe ware as well as large amounts of copper slag.

ARCHAEOLOGICAL SURVEY

Surveying for archaeological sites is the primary phase of any archaeological work (Tartaron 2003), and the inspection and identification of sites is an integral step before any excavation (Wandsnider & Camilli 1992). Some scholars have even suggested that surveying is more important than excavating (Alcock & Cherry 2004) but it is not without its limitations (Lewarch & O’Brien 1981; Sullivan et al. 2007), which if not taken into consideration, have the potential to distort results. These limitations can include vegetation cover (Foley 1981), survey procedures (Cherry et al. 1988), substrate type (Shennan 1985), site identification (Fish & Kowalewski 1990; Orton 2007) and the distance between the surveyor and the artefact as well as the artefact’s size and colour (Banning et al. 2006). This has led some researchers to question the quality of data produced by archaeological surveys (Cowgill 1989) and ask what in fact these finds actually represent (Wandsnider & Camilli 1992). Most researchers, however, do agree that many of the issues surrounding an archaeological survey can be overcome by a well-structured survey technique (Sampson 1985) and there are a number of techniques that a surveyor can choose from. Google Earth has been used to plot stone-walled settlements and to identify their different architectural styles (Sadri & Rodier 2012) as well as aerial photography to identify agriculturalist homesteads (Denbow 1984). Chemical analysis of soils such as phosphate testing (Wells et al. 2000) is also a useful technique as is the use of test pits (Nance & Ball 1986) to identify areas of human activity that are not visible on the surface. However, foot surveying is argued as the best technique for any archaeological survey (Foley 1981; Reid & Segobye 2000). There are a number of ways that a foot survey can be undertaken and includes surveying vegetation or geological zones (Sampson 1985; Lane 1996), specific features of the landscape such as kopjes (Forsman 2010) or walking in transects (Bintliff & Snodgrass 1988).

SURVEY METHOD

Two survey techniques were used in this project: foot and vehicle surveys. Not all of Northern Tuli was surveyed due to its size and the project’s time constraints. Only Tuli Safari Lodge (2143 ha) and Uitspan South (794 ha) were surveyed completely on foot with the northern portion of Tuli surveyed in a vehicle. The Mashatu Game Reserve (25 018 ha) was also surveyed but not in its entirety. Mashatu was divided up into 1 × 1 minute squares using a 1:50 000 topographic map (Fig. 3). In each square terrain ruggedness (as indicated by the total length of contour lines), hill ranges, the dominant geology and soil type, the number of kopjes, known sites and possible sites were recorded. Based on the presence, absence and combination of these attributes certain squares were selected for foot surveying. The intention was to cover not only areas where sites were known or expected to occur but also a representative sample of the different ecological zones. The area around Mmamagwa was completely surveyed in order to gain a better understanding of site distribution around this important farmer site and to test whether there is a greater density of forager sites from within the last 2000 years around the Mmamagwa settlement (see Reid & Segobye 2000). Figure 4 presents a map of the foot and vehicle surveys.

TABLE 1. Chronology of major ceramic facies found in the area.

<table>
<thead>
<tr>
<th>Ceramic facies</th>
<th>Date (AD)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Happy Rest</td>
<td>350–600</td>
<td>Hanisch 1981a</td>
</tr>
<tr>
<td>Zhizo</td>
<td>750–1050</td>
<td>Calabrese 2000a</td>
</tr>
<tr>
<td>Leekowe</td>
<td>1050–1220</td>
<td>Calabrese 2000a</td>
</tr>
<tr>
<td>Toutswe</td>
<td>1050–1300</td>
<td>Huffman 2007: 151</td>
</tr>
<tr>
<td>K2</td>
<td>1000–1200</td>
<td>Huffman 2007: 279</td>
</tr>
<tr>
<td>Transitional K2</td>
<td>1200–1250</td>
<td>Huffman 2007: 279</td>
</tr>
<tr>
<td>Mapungubwe</td>
<td>1250–1300</td>
<td>Calabrese 2000b</td>
</tr>
<tr>
<td>Icon</td>
<td>1350–1400</td>
<td>Huffman 2010</td>
</tr>
<tr>
<td>Khama</td>
<td>1400–1800</td>
<td>Huffman 2012</td>
</tr>
<tr>
<td>Vendela (Letaba)</td>
<td>1600 until present</td>
<td>Louober 1991</td>
</tr>
</tbody>
</table>
SITE DEFINITION AND RECORDING

Among other reasons, survey data needs to be recorded so as to inform future decisions on which sites are to be excavated (Foley 1981). Important information to record includes site position, the condition of the site and deposit, the approximate depth of the deposit, a list of artefact types present such as LSA lithics, ceramics or bead types with an estimate of artefact density and site size. In parts of Europe, North America and Africa the concept of a ‘site’ is rejected (Ebert 2001) because defining sites in areas with a widespread artefact distribution is not always possible (Krakker et al. 1983). For this reason some have instead suggested that archaeology needs to be studied across the landscape (Thomas 1975; Foley 1981). The definition of a site draws on other debates in archaeology including - special purpose sites (Binford 1983) and aggregation and dispersal camps (Wadley 1989), the discussion of which is beyond the scope of this paper. Modifying the definition of Bevan & Conolly (2004) who refer to any accumulation of artefacts as a site, I consider sites to be any archaeological point of interest. While this includes what are traditionally accepted as sites such as agriculturalist homesteads it also includes discrete artefact accumulations like lithic or ceramic scatters, isolated finds of stone tools and rock markings such as murekala gaming boards or grinding hollows. In this survey, a survey card was developed with the categories GPS coordinates, site number, substrate, soil depth, erosion, location, habitat type, natural features, animal and human activity and archaeological features listed. The list of categories has a corresponding list of conditions which are numbered to simplify the recording process. For example, when recording the category soil depth the conditions and corresponding numbers are: 1 = <5 cm; 2 = 5–20 cm 3 = 20–50 cm; 4 = 50–100 cm and 5 = >100 cm. Only the number representing the applicable depth measurement is recorded. This technique allows for rapid recording in the field and a concise, systematic and consistent recording system easily stored in a digital format and manipulated thereafter.

FINDINGS

SURVEY RESULTS

The survey revealed 428 archaeological points of interest. From the findings some interesting points can be made and are summarised below.

LSA POINTS OF INTEREST

LSA artefacts are abundant in Northern Tuli and they are found in a range of contexts. However, most are of little interest to archaeologists. For example, of the 186 LSA points of interest 30 (16.1%) are at raw material outcrops, which contain a small number of lithics that are scattered over a large area and mixed with naturally occurring raw material resources. It is not possible to say when these lithics were produced and for how long the site was occupied and conducting a full study may prove difficult because of the lack of deposit, mixing of artefacts with naturally broken nodules and the wide distribution of the low density stone tool scatter.

Many of the LSA points of interest are ephemeral or discrete collections of lithics. Some offered no option for further enquiry due to a number of reasons, one of which is erosion; a total of 51 (27.42%) LSA points of interest were subjected to either extensive or considerable erosion. There are two reasons why erosion is so prevalent on the landscape. First, the area is covered with aeolian sand, possibly a mantle of the eastern palaeo-Kalahari (Le Baron et al. 2010). When flooding is experienced, to which the area is prone (Plug 2000), alluvial action results in the removal of the deposit and formation of erosional gullies. Second, the region was used for intensified local cattle ranching during the early part of the 20th century (Mazonde 1987) contributing to localised land degradation. Both of the factors have contributed to the eroded landscape. At 32 (17.20%) LSA points of interest, however, no erosion was recorded and the sites appear to be in primary context. Such ephemeral scatters are often overlooked by archaeologists (Orton 2007) and archaeological projects should include them as they may provide us with valuable information on short-term camps.

One might expect that there would be a concentration of LSA points of interest (including rock art sites) near to major agriculturalist centres such as has been found elsewhere in Botswana (Reid & Segobye 2000). Figure 5 shows the location of the Leokwe Hill and Mmamagwa agriculturalist centres with a 3 km radius buffer zone around each site and the known LSA points of interest, rock art sites and excavations carried out on the landscape. The density of LSA points around Mmamagwa is 1.17/km² (n = 33) and 1.03/km² (n = 29) at Leokwe Hill. In the area of Nidulamithi Kraal and Shawu Camp, two sites excavated in this project, the LSA density is 2.76/km² (n = 78) in the same sized buffer zone. It is clear that there is a large amount of forager sites around the agriculturalist centres but their contemporaneity with the agriculturalist centres is unknown.

FIG. 4. Foot and vehicle survey tracklogs.

FIG. 5. LSA point density around Leokwe Hill and Mmamagwa within a 3 km radius: B2, Balerno Shelter 2; B3, Balerno Shelter 3; BMS, Balerno Main Shelter; DS, Dzombo Shelter; JS, João Shelter; KC, Kambaku Camp; LMS, Little Muck Shelter; MS, Mafungane Shelter; and SC, Shawu Camp.
A number of LSA lithic scatters were also found within agriculturalist homesteads \((n = 32; 17.20\%\)) but without excavations their association cannot be determined. Similar occurrences have been found in other parts of southern Africa where the LSA material was associated with the agriculturalist homestead; for example, in Madikwe in the North West Province (S. Hall 2000), near Gaborone at Masagarape (Walker 1994), at Msuluzi in KwaZulu-Natal (Maggs 1980) and at Baobab, a Zhizo settlement in northern South Africa (Calabrese 2005: 84). It has been suggested that foragers moved into agriculturalist homesteads possibly through marriage (S. Hall 2000), labour relations or assimilation (Wadley 1996). The same shift occurring on the Greater Mapungubwe Landscape might explain the apparent disappearance of the foraging record in rockshelter sites around AD 1300 (Van Doornum 2005: 196). There are historical accounts of foragers living with farmers or in permanent homesteads that might indicate assimilation had occurred by the mid to late 1800s (see Elton 1872; Dornan 1917). In order to test whether foragers assimilated into farmer society, excavations need to be conducted at homesteads where lithics occur.

IRON AGE SETTLEMENTS

The so-called Iron Age of northern South Africa has been well-studied (for a review see Huffman 2007). In the 2229A map zone, over 1150 agriculturalist sites have been identified through surveys carried out by Tom Huffman and his students (Huffman 2012). Almost all of these sites are found in South Africa with 46 located in Northern Tuli. An additional 78 agriculturalist homesteads, defined by the presence of a single or several kraals, were identified during the survey for this project. In addition, 13 homesteads of those identified by G. Hall and Huffman were revisited either because they were located in the square being surveyed or found during the vehicle survey. Therefore, 91 homesteads were visited during the survey and a total of 124 homesteads have been identified on Mashatu, Tuli by G. Hall 2003). The main palace is on the eastern koppie and terrain is found at its southeastern base and near to the hilltop in this same area. On top of the hill is an area with grain bin foundations and a number of grinding stones and at the back or the western edge of the koppie there are at least 15 cupules in the bedrock. The hill has various terraced areas as well as extensive wailing with loopholes. Another large walled complex is located approximately 2.15 km south of Mmamagwa on top of a koppie. Only undiagnostic ceramics were found here during the survey along with a Bohemian glass bead which was produced in the 19th century AD (Wood 2005).

A number of homestead clusters were also identified during the survey and in different parts of the research area (Fig. 7). North of the Pont Drift border a cluster of eight sites with Icon and Khami ceramics were identified and one with Transitional K2 (TK2) sherds. At one of the Khami sites walling was found on a natural terrace south of the main kraal, which may demarcate a girls’ initiation zone (see Huffman 1984). Further north near to Ndulamithi Kraal are three agriculturalist homestead clusters, situated on the edge of the Mojale and Pitsani River floodplains, and another is located northwest of the Mmamagwa complex along the Motloutse River. The reason why homestead clusters exist and whether all of the settlements within the cluster are contemporaneous are unknown at this stage and should be the focus of future research.

TABLE 2. Agricultural homesteads identified based on ceramics and glass beads.

<table>
<thead>
<tr>
<th>Period</th>
<th>Iron Age settlements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhizo</td>
<td>7</td>
</tr>
<tr>
<td>Leokwe</td>
<td>2</td>
</tr>
<tr>
<td>K2</td>
<td>10</td>
</tr>
<tr>
<td>Transitional K2</td>
<td>3</td>
</tr>
<tr>
<td>Mapungubwe</td>
<td>6</td>
</tr>
<tr>
<td>Icon</td>
<td>1</td>
</tr>
<tr>
<td>Khami</td>
<td>30</td>
</tr>
<tr>
<td>Venda</td>
<td>2</td>
</tr>
<tr>
<td>Unknown</td>
<td>63</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
</tr>
</tbody>
</table>

FIG. 6. The distribution of agriculturalist homesteads in the survey zone. Ovals demarcate homestead clusters.
BUSHMAN AND KHOEKHOE ROCK ART

Eastwood and colleagues (e.g. Eastwood & Cnoops 1999; Eastwood & Eastwood 2006) have identified more than 150 Bushman rock art sites between the Mapungubwe eastern boundary and the confluence of the Motloutse and Limpopo Rivers. In Northern Tuli, however, only eight sites have been identified with an additional two so-called Khoekhoen herder art sites (Fig. 8) and 25 locations with engraved markings which include mankala boards, grooves, cupules or hollows. The Tuli Block as a whole, which includes Northern Tuli, lacks the density of Bushman rock art sites found in South Africa even though there are many paintable rock surfaces present (Walker 2009). A cursory investigation of the size of the paintable zone shows that in South Africa, the portion of the sandstone koppie belt that has been surveyed extends for 40.41 km along the Limpopo River and 9.43 km inland, covering approximately 381.01 km². The sandstone koppie belt within Northern Tuli is less extensive, covering an area of about 71.76 km² (24.16 km by 2.97 km). Therefore, in South Africa there is approximately a rock art site every 2.54 km² (total = 150) and one every 8.97 km² (total = 8) in Northern Tuli. It is clear that even though Northern Tuli has a smaller area where paintable surfaces occur it has a lower density of rock art sites. The relative lack of sites may indicate cultural differences existing across the Limpopo River, but even so, it would not exclude the possibility of cross-border trade, the sharing of ideas, migration and conflict (cf. Flynn 1997).

The Bushman rock art tradition in Northern Tuli is similar to rock art in northern South Africa and Zimbabwe (Walker 2009; see Eastwood & Eastwood 2006 for an overview). There is also so-called Khoekhoen herder art on the Greater Mapungubwe Landscape (see Eastwood & Smith 2005). Notably, herder art differs in the way images are produced and in the content; all are finger painted and are outlined geometric images (Smith & Ouzman 2004) many of which may represent aprons or loin cloths (Eastwood & Smith 2005). There are two known sites in Northern Tuli which have so-called herder images. One site, JB Shelter, is located behind Dzombo Shelter and has paintings similar to what has been identified elsewhere as aprons (Fig. 9). The only other recording of finger-painted art is at Cut Line Rock and although not mentioned in Mosothwane’s (2011) report it was identified during the survey along with a nearby panel of Bushman rock art. A further analysis of this is beyond the scope of this paper.

EXCAVATIONS

Six excavated sites produced archaeological materials. Each excavation is briefly described below and Table 3 is a summary of the findings at each site.

Dzombo Shelter (Fig. 10) is situated about 600 m west of the Mmamagwa complex. It is a fairly large (h: 3 m; d: 10 m; w: 8 m) north-facing rockshelter and was excavated because of its deep deposit (Fig. 11). Two areas of the site were excavated: inside

![FIG. 8. Rock art sites in Northern Tuli: Bushman, herder and farmer sites.](image)

![FIG. 9. A so-called Khoekhoe herder apron motif painted behind Dzombo Shelter.](image)

<table>
<thead>
<tr>
<th>TABLE 3. A brief summary of the excavated assemblage at each site: DS, Dzombo Shelter; JS, João Shelter; SC, Shawu Camp; MS, Mafunyane Shelter; KC, Kambaku Camp and NK, Ndlulamithi Kraal.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Chips</td>
</tr>
<tr>
<td>Chunks</td>
</tr>
<tr>
<td>Cores</td>
</tr>
<tr>
<td>Flakes</td>
</tr>
<tr>
<td>Broken flakes</td>
</tr>
<tr>
<td>Formal tools</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Plain ceramics</td>
</tr>
<tr>
<td>Diagnostic ceramics</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Organic beads</td>
</tr>
<tr>
<td>Glass beads</td>
</tr>
<tr>
<td>Metal beads</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
the rock shelter two 1 × 1 m squares were dug (trench 1) and a large artefact assemblage was recovered, and three squares were excavated in the outside living area (trench 2). Although no radiocarbon dates are currently available, the sequence of decorated ceramics and glass beads appears to be consistent with the dated sequence at farmer sites: in the upper levels Leopard’s Kopje ceramics, Mapungubwe oblates and K2 beads were found with Zhizo ceramics and glass beads below these. The data recovered from the site are comparable to Van Doornum’s (2005) findings in South Africa: the lithic assemblage is dominated by crypto-crystalline (CCS) materials with a high frequency of formal tools (4.16%) and there are few ceramic sherds and glass beads present.

The highest density of artefacts came from Mafunyane Shelter \((n = 595\) lithics/13 l bucket), which elsewhere may be named Tuli Lodge (the distinction was made since it was not certain that the shelters were the same because Walker’s [1994] report has no GPS coordinates for the site). On the surface a large assemblage containing lithics, ceramics and a variety of beads was recorded and excavations inside the rockshelter produced a large array of lithic artefacts including backed bladelets, segments, scrapers and a variety of cores. In total a sample of over 6000 lithics was collected in three 50 × 50 cm squares. Also found were glass beads, various organic beads, ceramics, copper items and a portion of a figurine. Of interest is the substantial amount of iron and copper slag found in the deposit.

In excavations at João Shelter (Fig. 12) a fairly large assemblage of over 6500 lithics \((n = 53\) lithics/13 l bucket) was recovered from seven 1 × 1 m squares. The rockshelter itself, where four of the squares were excavated, is relatively shallow \(h: 5\) m; \(d: 4\) m; \(w: 18\) m) and is situated along a portion of a large ridge \(h: 14\) m; \(l: 55\) m) less than 300 m southeast of the Mmamagwa complex. Immediately outside the rockshelter is an agriculturalist homestead with K2 decorated ceramics and K2, Mapungubwe, Indo-Pacific and European glass beads. At the site there are also at least three grainbin foundations, three possible human burials, a midden and stone-walling inside the rockshelter and along the koppie ridge next to the midden (trench 4). There is also a fine-lined painting of a kudu at the site and an indeterminate antelope. Most of the lithics \((n = 5405\) came from inside the rockshelter and are dominated by CCS materials but a lithic assemblage dominated by quartz came from two squares placed in the homestead at a grainbin foundation (trench 2) and in the midden (trench 4). Charcoal samples have been selected for radiocarbon dating to establish a chronology for the rockshelter and homestead.

Ndlulamithi Kraal was excavated to pursue the notion that foragers may have been living within farmer homesteads. At the site K2 and Leokwe decorated pottery was found, and scattered on the surface was an LSA lithic assemblage which included small and medium scrapers. The lithics were found in the kraal and particularly in the northern portion of the homestead near the koppie edge where trench 3 is located (Fig. 13). The site also has a possible second kraal \((l: 12\) m) that is slightly smaller than the upper kraal \((l: 18\) m; see Huffman 2009). The excavation revealed additional K2 and Leokwe decorated sherds and ostrich eggshell, bone, land snail, glass and copper beads. No diagnostic LSA artefacts were found in the excavation. However, at Kambaku Camp, a homestead with K2 and Khami decorated ceramics, a small diagnostic LSA assemblage was recovered from behind the hut zone where a single 1 × 1 m square was excavated, and from within the kraal in which three 1 × 1 m squares were dug. Like Dzombo and João Shelter, Kambuku Camp is in the southwestern sandstone belt not
far from the Limpopo River (500 m southeast) and the Mmanagwa complex (3 km west). The formal component of the lithic assemblage was relatively high (6.81%) when compared to Dzombo Shelter (4.16%) and Shawu Camp (3.44%) as well as other local excavations (also see Van Doornum 2007, 2008). Of great interest is the relatively late age estimate of the site and with radiocarbon dates it will be possible to associate the lithic assemblage with either the K2 or Khami occupation of the homestead.

The smallest excavated site where a single 1.5 × 1 m square was dug is Shawu Camp. The site is located on top of a koppie in the northern basalt zone in Mashatu. The koppie is surrounded by a massive CCS outcrop, composed mostly of agate, and over 90% of the lithic assemblage is made using CCS materials. The excavated assemblage is fairly small, with less than 1000 artefacts (n = 97 lithics/13l bucket), and no ceramics or organic material were found.

SUMMARY

This paper has presented an interim report of an archaeological survey in Northern Tuli, Botswana, near Mapungubwe, K2 and Schroda, as well as excavated LSA sites such as Balerno Main and Little Muck Shelter. The final results will help us better understand and interpret the archaeological record on the Greater Mapungubwe Landscape. Future studies will expand on the LSA and agricultural sequence in the Northern Tuli and address questions of rock art authorship and variability on both sides of the Limpopo River, incorporating this information into the broader archaeological framework for the region.

ACKNOWLEDGEMENTS

I would like to thank the Palaeontological Scientific Trust and its Scatterlings of Africa programmes for financial support and the Mashatu Game Reserve for lodging. All members of Northern Tuli must be thanked for their assistance and particu-

